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Small-molecule synthesis coupled with cellular profiling using Scheme 1
multidimensional screening has been used to assess the role of SiMe,Ar Ar
stereochemical and skeletal variation on assay outcomes, albeit Z Py MeSi
within a limited structure spacdetere, we provide an extension of + 0 Merss « variation of neighboring
this approach as a framework to assess the role of a main-group Ymo~ Y. o stereochemistry
element on assay outcomes. We considered that incorporating, for N \©\N + variation of neighboring
example, boron, silicon, selenium, or germanium into small R R functional groups (R, Y, Z)
molecules could provide new structures where the unique properties
of these elements may contribute to new biological activii€se
success of bortezomib (Velcade), a boron-containing proteasome
inhibitor, highlights the use of a main-group element in a therapeutic
context® As a first step, a synthesis pathway was developed leading

to o'rganosmtcosn Eroducl%é _If_}?vmg tilllcon ;?llacedtr\]/v |tz!n a th lra;I_ and pure proteins that are relevant to cancer, developmental biology,
environmen (.C eme 1). This pa way allows the dIVErsiication ;e stioys disease, and psychiatric dise&s&o normalize the
of stereochemistry at nearby stereogenic centers and the variation

+ incorporation of main-group
~~z element(s), silicon in this study

Ninety representative compounds resulting from the annulation
pathway were next profiled using 41 diverse assays to evaluate the
potential of silicon-containing small molecules to modulate cellular
processes. These small-molecule screens use whole cells (mam-
malian cell lines), whole organisms (yeast, bacteria, plasmodium),

of neighboring functional groups. In order to profile the biological A} o shen . NaOH, HaO (81%) O  SiMeAr
activity of these organosilanes, multidimensional screening was JJ\/KM;\ 2. PyBrOP, DIPEA N Ao
performed, providing a first quantitative glimpse of the rich MeO A Me NH C\ 2(Rors)
activities of silicon-containing small molecules within varying o - O8iRg J Ar = anisyl,
stereochemical and appendage contexts. LiAIH, (92%) (6% over 4 steps) 03Fs gr'i:?,; S,
Our syntheses of test, silicon-containing small molecules relies SiMe,Ar 1'Tsc':,“h”3 R,SiO si
. . . . 2 Cul, -ProNEt iMe, Ar
on the stereoselective annulation pathways available for allylsilanes Ho’\)‘f\m > p .
with sr-electrophile$. Crotylsilanes containing hydrogen-bond 3a(Ror S nasm’\// N=N-N 4(RorS) °
donors and acceptorg@<4) were derived from the common ester (OH —= OSiR; =3b)  (78% over 3 steps)
crotylsilane precursot (Figure 1A)7 Each of the R)- and §)- B ArMe,Si
enantiomers 02—4 was prepared to facilitate the synthesis of single 1. isatin (5),
enantiomers for biological evaluation. The anisyl crotylsilanes were SiMear o neMP Mer.
selected based on their stability, enhanced nucleophilicity in the Z\A/\Ma B R
annulation reaction (relative to Ph), and ease of protodesilyl&tion. 14 (Rors) TMSOEt 6(A-or S.N\R
Spiro-oxindoles represent an attractive framework for synthesis 68-95% conversion _ derived)
. . . . average yields = 55-80% over 3-5 steps
due to their precedent for biological activityTherefore, we =955 ds based on LOMS and NMR spectroscopy
developed a general method for Lewis acid-mediated annulations OMe o 0 [o] o =
of isating® (5) using macrobead-bound crotylsilan2s4.1! This Me ov\ctjscovmo
method yields spirocyclic annulation products as single stereoiso- N ° N N N x
mers as judged by LCMS arith NMR spectroscopy (Figure 1B). Me Br Mo scp=-me R 5h, X = H‘“@
Use of 2,6-ditert-butyl-4-methylpyridine (DTBMP) as a protic acid Me™ e Me sb o ome Ron 5 K= 4lodo
scavenger was essential to prevent Sideprotection or cleavage (Y = H, except where indicated) g;l";fz';‘o;aargﬂ Y o X tromo

from the macrobead support. No protodesilylation or elimination

of the silyl group was observed when HF/py (5% in THF) was c)
used to cleave the SO linker, demonstrating the complementary
reactivity of the S+O bond and the SiC bond under these |
conditions. Relative stereochemistry was confirmed by X-ray

ArMe,Si

OSiR,

Q
1. Cul, diamine, HH
CsaC05

e B
/~0 2 HF/py; TMSOEt

i H N ) N
crystallographic analysis$l). (Sderived) 7a >00% conversion,

- . . . L . - 78% yield over 4 st - —

In addition to incorporating functionality in the crotylsilane (OEﬁF{a——DH=$ ;,mf,;y;;;fn; (sfj;‘: (Sderived)8

component, the modular placement of aryl iodide functional groups rigure 1. Annulations of functionalized crotylsilanes with isati, (vhere

in the isatin component can be used in appending processes forAr = anisyl and Z= ester (), amide @), silyl ether @), or triazole 4). To

further substitution and follow-up chemistry, for example, to confirm the structure of the annulation product, on-bead analysis was
. - P . P performed using magic angle spinning (MA@ NMR spectroscopy;

fa(:l_lltate ta_rget |den_t|f|ca_1t'|on. The conversion of the aryl iodide to cleaved products were analyzed using LCMS and NMR spectroséy (

various amido functionalities was accomplished using the Buchwald 13c ang 1H). X-ray crystallography was performed with spirocydé

amidation (for example, Figure 1&). prepared from racemic crotylsilarieand isatin5|.
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activities of silicon-containing small molecules. Not surprisingly,
loss of gain of

signal A key roles for functional group and stereochemical diversity (cf.

signal \

/ — . — = \i""‘\q;'kﬂ T differential performance of enantiomeric pairs of products) can also
duplcats . E I bg gscertalned (Figure 2C,D), where activity trends are observed
experiments with normalization of data biclogical signature within each assay. Secondary assays were performed to demonstrate

DMSO control wells from multiple assays based on 41 assays dose-dependent activity and to obtaingg@lues for representative
B) compounds. Examples are shown for the growth inhibition of lung
Y adenocarcinoma (A549) cells and hepatocellular carcinoma (HepG2)
%204 cells (Figure 2E}>
gm We are currently working to understand the role of silicon in
° N mEES > the observed biological activif{. This work provides a framework
A0 to assess the roles of silicon in assay outcomes, including
L ~— s comparative analyses of compounds having different substituents
assay experiment.  mammalian yeast, bacterla  protein attached to silicon and of compounds having silicon replaced with
o) cellines and plasmedium carbon and other main-group elements.
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assay experiments (see figure 2B above)
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